Letter to the Editor Convergence of Cubic Spline Interpolants

The purpose of this note is to communicate the proof of a result ascribed to us by Meir and Sharma in their recent paper [1].

Let C denote the space of all continuous functions f on $[0,1]$ which are periodic: $f(0)=f(1)$. This space is assigned the supremum norm. Let a "point group" be prescribed:

We assume that for each $n, 0=x_{0}^{(n)}<\cdots<x_{n}^{(n)}=1$. For each n, let S_{n} denote the linear subspace of C consisting of all periodic cubic splines with "joints" $x_{n}^{(n)}, \ldots, x_{n}^{(n)}$. Thus, $s \in S_{n}$ if, and only if, $s \in C, s^{\prime} \in C, s^{\prime \prime} \in C$, and on each of the intervals $\left[x_{0}^{(n)}, x_{1}^{(n)}\right], \ldots,\left[x_{n-1}^{(n)}, x_{n}^{(n)}\right]$, s reduces to a cubic polynomial. For each n and for each $f \in C$, let $L_{n} f$ denote the unique element of S_{n} which interpolates to f at the joints $x_{0}^{(n)}, \ldots, x_{n}^{(n)}$. The operator L_{n} is a linear projection of C onto S_{n}.

An important problem which is still unsolved in the theory of spline approximation is to determine a simple necessary and sufficient condition on the point group in order that $L_{n} f$ converge uniformly to f for all $f \in C$.

$$
\text { Define } \quad h_{i}^{(n)}=x_{i}^{(n)}-x_{i-1}^{(n)} \quad \text { and } \quad h^{(n)}=\max _{1 \leqslant i \leqslant n} h_{i}^{(n)} .
$$

The condition $h^{(n)} \rightarrow 0$ implies that $\mathrm{U}_{n=1}^{\infty} S_{n}$ is dense in C. This implication follows, for example, from Theorem 2 of [2]. By Banach's Theorem, one obtains then the following result:

Theorem. If $h^{(n)} \rightarrow 0$, then the following conditions are equivalent:
(1) $L_{n} f \rightarrow f$ (uniformly) for all $f \in C$.
(2) $\lim \sup \left\|L_{n}\right\|<\infty$.

The effect of this theorem is to focus attention on the problem of estimating $\left\|L_{n}\right\|$. Several such estimates were given in [2]. In [1], Meir and Sharma prove that if the number $m_{n}=\max _{|i-j|=1} h_{i}^{(n)} \mid h_{j}^{(n)}$ is less than $\sqrt{2}$, then

$$
\left\|f-L_{n} f\right\| \leqslant\left[1+\frac{3}{4} m_{n}\left(2-m_{n}^{2}\right)^{-1}\right] \omega\left(f ; h^{(n)}\right) .
$$

This result can be strengthened as follows.
Theorem. If $m_{n}<2$, then $\left\|L_{n}\right\|<6\left(2-m_{n}\right)^{-1}$ and $\left\|f-L_{n} f\right\|<30\left(2-m_{n}\right)^{-1} \omega\left(f ; h^{(n)}\right)$. Consequently, the condition $\lim \sup m_{n}<2$ is sufficient to guarantee $L_{n} f \rightarrow f$ for all $f \in C$.

Proof. One starts with Eq. (1), p. 96, of [2], written in the form

$$
\begin{equation*}
q_{i} h_{i} \lambda_{i-1}+2 h_{i} \lambda_{i}+p_{i} h_{i} \lambda_{i+1}=3 p_{i} h_{i} h_{i+1}^{-1}\left(f_{i+1}-f_{i}\right)+3 q_{i}\left(f_{i}-f_{i-1}\right) . \tag{A}
\end{equation*}
$$

Denote the right member of this equation by r_{i}, and set $\mu_{i}=h_{i} \lambda_{i}$. In the notation, the dependence upon n is suppressed. Equation (A) becomes

$$
\begin{equation*}
q_{i} h_{i} h_{i-1}^{-1} \mu_{i-1}+2 \mu_{i}+p_{i} h_{i} h_{i+1}^{-1} \mu_{i+1}=r_{i} . \tag{B}
\end{equation*}
$$

Now refer to Eq. (2), p. 97, of [2]. Let $\|f\| \leqslant 1$ and $s=L f$. Then on the interval $\left[x_{i-1}, x_{i}\right]$, we have

$$
\begin{aligned}
|s(x)| & \leqslant\left|A_{i}(x)\right|+\left|B_{i}(x)\right|+\left|\lambda_{i-1}\right|\left|C_{i}(x)\right|+\left|\lambda_{i}\right|\left|D_{i}(x)\right| \\
& =1+\left|\mu_{i-1}\right| \frac{h_{i}}{h_{i-1}} \frac{C_{i}(x)}{h_{i}}-\left|\mu_{i}\right| \frac{D_{i}(x)}{h_{i}} \\
& \leqslant 1+\max \left\{m\left|\mu_{i-1}\right|,\left|\mu_{i}\right|\right\} \frac{C_{i}(x)-D_{i}(x)}{h_{i}} \\
& \leqslant 1+\frac{1}{4} \max \left\{m\left|\mu_{i-1}\right|,\left|\mu_{i}\right|\right\} \\
& \leqslant 1+\frac{m}{4} \max _{1 \leqslant i \leqslant n}\left|\mu_{i}\right| .
\end{aligned}
$$

Let $\left|\mu_{j}\right|=\max \left|\mu_{i}\right|$. From Eq. (B) we have

$$
2\left|\mu_{j}\right| \leqslant\left|r_{j}\right|+q_{j} m\left|\mu_{j}\right|+p_{j} m\left|\mu_{j}\right|=\left|r_{j}\right|+m\left|\mu_{j}\right| .
$$

Hence,

$$
\max _{1 \leqslant i \leqslant n}\left|\mu_{i}\right| \leqslant\left|r_{j}\right|(2-m)^{-1} .
$$

Since $\|f\| \leqslant 1$, we have $\left|r_{j}\right| \leqslant 6 p_{j} m+6 q_{j} \leqslant 6 m$. Thus, $\max \left|\mu_{i}\right| \leqslant 6 m(2-m)^{-1}$. From an inequality above we, therefore, obtain

$$
|s(x)| \leqslant 1+\frac{3}{2} m^{2}(2-m)^{-1}<6(2-m)^{-1} .
$$

This establishes the asserted bound on $\left\|L_{n}\right\|$. Now let f be any element of C and let s be its best approximation in S_{n}. Meir and Sharma, improving upon results in [2], have shown in [1] that $\|f-s\| \leqslant 5 \omega(f ; h)$. Consequently,

$$
\begin{aligned}
\|f-L f\| & =\|(f-s)-L(f-s)\| \\
& =\|(I-L)(f-s)\| \\
& \leqslant\|I-L\|\|f-s\| \\
& \leqslant(1+\|L\|\|f-s\| \\
& \leqslant\left[2+\frac{3}{2} m^{2}(2-m)^{-1}\right] 5 \omega(f ; h) \\
& \leqslant 30(2-m)^{-1} \omega(f ; h) .
\end{aligned}
$$

These results emphasize what was pointed out in [2], namely, that the convergence depends not on the boundedness of $K_{n}=\max _{i} h_{i}^{(n)} / \min _{i} h_{i}^{(n)}$ but upon the magnitude of $m_{n}=\max _{|i-j|=1} h_{i}^{(n)} / h_{j}^{(n)}$.

Conjecture. In order that $L_{n} f \rightarrow f$ for all $f \in C$, it is necessary that $\lim \sup m_{n}<2$.

References

1. A. Meir and A. Sharma, On uniform approximation by cubic splines, J. Approximation Theory 2 (1969), 270-274.
2. E. W. Cheney and F. Schurer, A note on the operators arising in spline approximation, J. Approximation theory 1 (1968), 94-102.

E. W. Cheney*
Department of Mathematics, Michigan State University, East Lansing, Michigan 48823
F. Schurer
Technological University Eindhoven, Eindhoven, The Netherlands
Received October 3, 1969

* The first author was supported by the Air Force Office of Scientific Research.

